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Abstract

This paper introduces an approach for identify-
ing predictive structures in relational data using
the multiple-instance framework. By a predictive
structure, we mean a structure that can explain a
given labeling of the data and can predict labels
of unseen data. Multiple-instance learning has
previously only been applied to flat, or proposi-
tional, data and we present a modification to the
framework that allows multiple-instance tech-
niques to be used on relational data. We present
experimental results using a relational modifica-
tion of the diverse density method (Maron, 1998;
Maron & Lozano-Ṕerez, 1998) and of a method
based on the chi-squared statistic (McGovern &
Jensen, 2003). We demonstrate that multiple-
instance learning can be used to identify predic-
tive structures on both a small illustrative data set
and the Internet Movie Database. We compare
the classification results to ak-nearest neighbor
approach.

1. Introduction

Identifying useful structures in large relational databases is
a difficult task. For example, consider the task of predict-
ing which movies will be nominated for academy awards
every year. The Internet Movie Database (IMDb) con-
tains about one hundred movies that were nominated for
academy awards in the time period 1970 to 2000 and thou-
sands of movies that were not nominated in this time pe-
riod. We would like to identify relational structure from a
set of positive and negative examples (e.g., the structure
surrounding nominated and non-nominated movies) that
can explain known labels and predict labels for unseen data.
Specifically, given the schema for the IMDb shown in Fig-
ure 1, we would like to identify some substructure that can
predict which movies will be nominated and which movies
will not be nominated. An example substructure could be
a movie where one of the actors was previously nominated
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Figure 1. Schema that we used for the IMDb

for an academy award. Such structures are useful not only
for classification and prediction tasks but also for better un-
derstanding of large relational databases.

Multiple instance learning (MIL) (details of MIL are given
in Section 2) is a promising framework for identifying pre-
dictive structures in large relational databases. First, MIL
methods are designed for learning from ambiguous and
partially labeled data. With relational data, it is often easy
to label a collection of objects and their relations. However,
labeling each individual object and relation by its contribu-
tion to the overall situation is more difficult. For exam-
ple, we can obtain the labels for the movie subgraphs by
noting whether the movie was nominated for an academy
award, but it would be difficult to label each actor and stu-
dio by their individual contribution to whether the movie
was nominated for an award. Second, multiple-instance
(MI) techniques are designed to identify which part of the
data can explain the labels. For example, the relations in
the movies example could contain all related movies, re-
leases, studios, etc., for each nominated movie, but the best
concept might only use the studio and producers linked via
a movie.

MIL has been used successfully in a number of applica-
tions using propositional data (Amar et al., 2001; Diet-
terich et al., 1997; Goldman et al., 2002; Maron, 1998;
Maron & Ratan, 1998; Zhang & Goldman, 2002; Zucker
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& Chevaleyre, 2000). However, none of these techniques
have examined MIL approaches for relational data even
though the data set used in the introductory MIL paper (Di-
etterich et al., 1997) was relational (it was flattened into
feature vectors to solve the task). By working with the
data in relational form, we can detect structures that can-
not be represented in a feature vector format. For example,
a link between two related movies where the movie’s pro-
ducer was also nominated for an academy award for a pre-
vious movie would be very difficult to represent in propo-
sitional data, especially if the form of the final structure
is not known in advance. Simply flattening the relational
data (into homogeneous feature vectors) presents a number
of problems. The homogeneity of the resulting data either
means data duplication (which will affect probability esti-
mation) or data loss through aggregation.

2. Notation and background

We use the PROXIMITY 1 system to represent, store, and
query relational data sets. LetG = (v,e) be a graph. Ob-
jects in the world, such as people, places, things, and
events, are represented as vertices in the graph. Relations
between these objects, such asacted-in(actor, movie)are
represented by edges. In general, if there is a relation
r(o1,o2), theno1,o2 ∈ v andr ∈ e. In PROXIMITY , vertices
are called objects and relations are called links. Both ob-
jects and links can have multiple attributes associated with
them. For example, using the schema shown in Figure 1,
movies, people, genres, etc., are all objects. Relationships
such asawarded(movie, best-picture)are links. Attributes
can be associated with objects, such asmovie.name, or
links, such asawarded.award-status. PROXIMITY allows
us to query the database using a graphical query language
called qGraph (Blau et al., 2002). qGraph provides a form
of abstraction on top of SQL by allowing us to construct
visual queries of the graphical database. Queries return a
collection of subgraphs and not just a set of database rows.

An MI learner uses labeledbagswhere a bag is a collection
of instanceswith one label for the entire collection. Aposi-
tive bagcontains at least one instance of thetarget concept
while a negative bagcontains none. With flat data, both
instances and target concepts are points in feature space.
With relational data, both instances and target concepts are
graphs, or relations among a (heterogeneous) set of objects.
The goal is to find a concept that explains the labels for the
bags and can be used to predict labels for unseen data. It
is not known in advance which instance caused the bag to
be labeled as positive. If this were known, a supervised
learning approach could be used instead.

1For additional details on PROXIMITY , see
http://kdl.cs.umass.edu.

We present an approach to adapting the MIL framework
for use with relational data where bags are collections of
graphs. The instances in the bag can be either explicitly
enumerated as a set of graphs or they can be the set of
(implicit) subgraphs of a single, larger, graph. The struc-
ture of the relational data determines which representation
is most appropriate. If the data consist of sets of disjoint
graphs, such as theMUSK task where each conformation
of a molecule could be represented as a separate graph,
then it is better to explicitly enumerate the instances in each
bag. If the data consist of a large connected database, such
as IMDb, then a bag consisting of single large graph can
be easily created by querying the database. For example,
in IMDb, the bags for the movies nominated for academy
awards can be created by querying for all objects connected
to a nominated movie by one or two links.

For the MI notation, we follow that of Maron (1998) and
Maron and Lozano-Ṕerez (1998). The set of positive bags
is denotedB+ and theith positive bag isB+

i . Likewise, the
set of negative bags is denotedB− and theith negative bag
is B−

i . If the discussion applies to both types of bags, we
drop the superscript and refer to it asB. The jth instance
of the ith bag is denotedBi j . The target concept is denoted
ct and other concepts asc. With flat data, a concept is a
point in feature space. With relational data, a concept is an
attributed graph.

3. MI learning on relational data

The data available to an MI learner is a set of positive and
negative bags,B+ andB−. If the concept is a feature vec-
tor v, then each bag consists of a set of feature vectors:
Bi = {vi1,vi2, . . . ,vik}. The most straightforward transfor-
mation to apply MIL to relational data is to have each in-
stance represented as a separate graph. In this case, a bag
would consist of a set of graphs:Bi = {Gi1,Gi2, . . . ,Gik}.
The goal is then to find a concept that can explain the la-
beling of the bags. The concept,c, is a subgraph of one the
graphs inB+ andB−. This representation is best suited for
tasks where the data are already available as a set of dis-
joint graphs. TheMUSK data set (Dietterich et al., 1997),
image recognition tasks (Maron & Ratan, 1998), and the
mutagenesis data set (Zucker & Chevaleyre, 2000) fit into
this framework.

When the relational data are available as a large connected
graph instead of a set of unconnected graphs, it may be eas-
ier to identify a single subgraph as containing something
positive instead of enumerating every instance. For exam-
ple, in the IMDb, we can hypothesize that there is some
relational structure surrounding movies that could be used
to predict whether a movie gets nominated for an academy
award. Without knowing the structure in advance, it would
be very difficult to create bags of every possible struc-



ture. However, it is relatively easy to identify the depth-two
structure surrounding the movies and to use this to create
bags where each bag has only one graph. The instances are
assumed to be the set of all subgraphs of the single graph
in the bag.

More formally, we propose to create the set of bagsB+

and B− such thatBi = {Gi} whereGi is a single (large)
graph. The instances ofBi are assumed to be the set of all
subgraphs ofGi . Since the size of this set is exponential
in the size ofGi , where|Gi | is defined as the sum of the
number of vertices and edges inGi , we do not explicitly
enumerate the instances for each bag. Instead, the search
methods take into account this assumption.

3.1. Relational diverse density

Several existing MI methods can be transformed to work
with relational data. We adapt both diverse density (Maron,
1998; Maron & Lozano-Ṕerez, 1998) and chi-squared (Mc-
Govern & Jensen, 2003). We first briefly review the defini-
tions for diverse density. The most diversely dense concept
is defined as that which is closest to the intersection of the
positive bags and farthest from the union of the negative
bags. More precisely, Maron defines the diverse density of
a particular conceptc to be: DD(c) = P(c = ct |B+,B−).
We refer toP(c = ct) as P(c) to simplify the equations.
Using Bayes rule and assuming independence, this can be
reduced to finding the conceptc for which the likelihood:
∏1≤i≤nP(c|B+

i )∏1≤i≤mP(c|B−
i ) is maximal. The proba-

bility that conceptc is the target concept given the evi-
dence available in the bag,P(c|Bi), still needs to be de-
termined. Maron discusses several ways to do this. In this
work, we follow his suggestion of using a noisy-or model
(Pearl, 1988), in which case we have:

P(c|B+
i ) = 1− ∏

1≤ j≤p

(1−P(B+
i j ∈ c)) (1)

P(c|B−
i ) = ∏

1≤ j≤p

(1−P(B−
i j ∈ c)), (2)

wherep is the number of instances in bagBi andP(Bi j ∈ c)
is the probability that the specified instance is in the con-
cept.

CalculatingP(Bi j ∈ c) requires a specific form of target
concept. In the case of flat data, Maron often used what
he called the single-point concept which is a point in fea-
ture space. With this concept, the calculation ofP(Bi j ∈ c)
is based on the Euclidean distance between pointsBi j and
c in feature space. We need to defineP(Bi j ∈ c) whenBi j

and c are both attributed graphs instead of points in fea-
ture space. To do this, we need a method for measuring the
distance between two attributed graphs.

Metrics for measuring the distance between attributed
graphs are not as well studied as metrics for flat data.

We use the metric proposed by Bunke and Shearer (1998)
which is based on finding the maximal common subgraph
(MCS) between two graphs. They demonstrate that this
distance measure satisfies the metric properties. The dis-
tance between two graphsG1 andG2 is defined as:

d(G1,G2) = 1− |MCS(G1,G2)|
max(|G1|, |G2|)

(3)

whereMCS(G1,G2) is the maximum common subgraph of
G1 andG2. This metric was developed for unlabeled graphs
but can be modified so that the MCS also uses the attributes
to limit the number of matches. A disadvantage of this met-
ric is that computing the MCS is exponentially complete.
In the course of a thorough search in concept space, MCS
is calculated frequently. We approximate the calculation
by limiting the depth of the recursive search. Research on
a principled polynomial-time distance metric for attributed
graphs is a topic for future work. Based on this metric, we
defineP(Bi j ∈ c) as:

P(Bi j ∈ c) =
|MCS(Bi j ,c)|
min(|Bi j |, |c|)

(4)

Note that Equation 4 is a slight modification of Equation 3
where the maximum is replaced by a minimum. Since we
are searching for the best subgraph, it is better to weight the
match by the size of the proposed subgraph rather than by
the size of the instances or of the bag, which could be arbi-
trarily large. If the instances in the bag are not enumerated,
P(c|Bi) becomes:

P(c|B+
i ) =

|MCS(c,B+
i )|

min(|c|, |B+
i |)

(5)

P(c|B−
i ) = 1−

|MCS(c,B−
i )|

min(|c|, |B−
i |)

. (6)

This means that the probability thatc is the correct con-
cept given the evidence available in positive bagB+

i is the
percent match of graphc to graphB+

i . Likewise, the prob-
ability that c is the correct concept given the evidence in
negative bagB−

i is one minus the percent match of graphc
to graphB−

i . In other words, ifc matches highly withB+
i ,

the probability thatc is correct will be high but if it matches
highly with B−

i , the probability thatc is correct will be low.

3.2. Relational chi-squared method

In addition to diverse density, we present results using the
chi-squared MI method (McGovern & Jensen, 2003). Chi-
squared is simpler to calculate than diverse density and it
allows for a more thorough search of the concept space
because it provides a guaranteed pruning method. Chi-
squared is calculated by filling in the contingency table
shown in Table 1. The rows of the table correspond to the



Table 1. Contingency table used by the chi-squared method. The
cells are filled in using the predicted and known labels for the
training bags using the proposed concept.

Actual
Bag label

+ -
Predicted + a b
bag label - c d

predicted label from the concept and the columns corre-
spond to the actual labels for the training bags. Assuming
a method for labeling the bags given a proposed target con-
cept, the table is filled out in the following manner. If the
concept predicts that the bag will be positive and it is pos-
itive, a is incremented. If the prediction is positive but the
bag is really negative,b is incremented. If the prediction is
negative and the bag is positive,c is incremented. Finally,
d is incremented if the concept predicts negative and the
bag is negative. Chi-squared is calculated by summing the
squared differences for the expected values in each cell of
the contingency table versus the observed values.

The best concept is defined as that with the highest chi-
squared value. This will occur when the mass is concen-
trated on the main diagonal (e.g., ina andd) which means
that the concept is predicting the most positive and the most
negative bags correctly. More information about the chi-
squared evaluation function for MIL can be found in (Mc-
Govern & Jensen, 2003).

4. Experimental results: illustrative data set

We first present results using a small illustrative database
where we both know the target answer in advance and can
easily visualize the data. The objects and links each have
one real-valued attribute associated with them. The target
concept, shown in Figure 2, is a size-three clique with a
particular set of attribute values on the objects and links.

We illustrate both chi-squared and diverse density using
both data representations and this target concept. In both
cases, graphs, including objects, links, direction of the
links, and attributes, were generated randomly. To cre-
ate a positive instance, a graph was randomly grown from
the target clique. Negative instances were randomly grown
from an empty graph. Attribute values from the target con-
cept can be used in negative instances so long as the entire
concept is not included. For the first data representation,
both positive and negative graphs varied in size from three
to ten objects with the same number of random links. Each
positive bag had one positive instance and from two to six
negative instances. Negative bags contained from three to
seven negative instances. A sample positive instance and

1.0

3.0 2.0

1.0

2.0

3.0

Figure 2. Target concept for the illustrative data set

a sample negative instance are shown in Figure 3a. The
bags for the second data representation, which contained
only one instance per bag, varied in size from ten to twenty
objects and had twice as many random links as there were
objects. Example positive and negative bags for this frame-
work are shown in Figure 3b. In both cases, we generated
twenty positive bags and twenty negative bags.

For this experiment, we compared the relative prediction
accuracies for the relational diverse density approach, the
chi-squared technique, and thek-nearest neighbors (kNN)
method. We repeat this comparison for both data repre-
sentations. For the diverse density and chi-squared ap-
proaches, the MI learner identified the best concept (or set
of concepts) for predicting the bag labels. Given a rela-
tional conceptc and a bagBi with an unknown label, the
predicted real-valued label is:

label= max
1≤ j≤k

P(Bi j ∈ c) = max
1≤ j≤k

|MCS(Bi j ,c)|
min(|Bi j |, |c|)

.

If there is only one graph in the bag, this becomes:

label=
|MCS(Bi ,c)|
min(|Bi |, |c|)

.

Under this formulation, the predicted label for the bag will
be a real number in the interval[0,1]. A prediction of zero
means the bag should be labeled as negative and a predic-
tion of one means that the bag should be labeled as positive.
Values in the range[0,1] are also possible and we examine
the best choice of thresholds through the use of an ROC
curve that measures the ratio of true positives to false posi-
tives as the threshold varies from zero to one.

We used kNN as a baseline for comparison. We identify
thek nearest neighbors using the distance metric specified
in Equation 3. Because the true labels for the individual
instances are unknown, multiple instances in a bag are all
assumed to have the same label as the bag. If the instances
are not individually enumerated, we assign the label to the
graph representing the bag itself and use this larger graph
for the kNN calculations. We modify the prediction mech-
anism of kNN in the following manner. For each instance
in an unlabeled bag, we determine the ratio of positive in-
stances in thek nearest instances. The most extreme of
these ratios weighted by the number of different positive or



A: Sample instances in a bag
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Figure 3. A: Example instances for the three-clique task for the
representation where each instance is enumerated. The target con-
cept is shown with dashes. B: Example bags for the three-clique
task for the representation where each bag consists of a single
large graph.
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Figure 4. ROC curve comparing the performance of chi-squared,
diverse density, and kNN on the illustrative data set. In this case,
each bag had an enumerated set of instances.

negative bags that contributed to the ratio is chosen and the
ratio itself (without the weighting) is output as the label.
The idea of weighting the ratio this way is related to di-
verse density and helps to make kNN a higher performing
baseline for comparison.

Figure 4 shows the ROC curves for relational diverse den-
sity, chi-squared, and two values ofk for kNN for the first
data representation, where there are multiple enumerated
instances per bag. These numbers are averaged over 10-
folds of cross validation. The test set for each fold was
2 positive bags and 2 negative bags and the training set
was the remaining 18 positive bags and 18 negative bags.
The chi-squared method identifies the correct target con-
cept each time and had perfect prediction for this task. We
do not claim that the chi-squared method will always have
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Figure 5. ROC curves for the illustrative data set where each bag
had one large graph.

perfect performance but it was able to quickly find the tar-
get concept for this task. The relational diverse density ap-
proach sometimes found a subset of the true concept which
gave it a small false positive rate depending on the thresh-
old chosen to differentiate between positive and negative
predictions. The two kNN approaches shown had higher
accuracy than diverse density for very high thresholds but
quickly degraded in performance while diverse density was
more robust to threshold changes. At a threshold of 0.5,
the accuracies were: chi-squared = 100%, diverse density
= 85%, and kNN = 80% and 70% fork = 4 andk = 20.
Accuracy is the percent of bag labels in the test set that are
predicted correctly.

Figure 5 shows the ROC curve for the same three meth-
ods in the case where each bag had only one large graph in
it. With a threshold of 0.5, chi-squared had 100% accuracy,
diverse density had 92.5% accuracy, and kNN had 70% and
50% accuracies fork = 3 andk = 10. These results are
comparable with those presented above and demonstrate
that both data representations can be used successfully for
MIL on relational data. Our next experiments focus on a
much larger database.

5. Experimental results: IMDb

The IMDb is a much larger database with one million ob-
jects and nearly five million links. This is a large database
where the ability to identify predictive structures should
help us to better understand the nature of the database. The
two tasks that we present are: predicting which movies will
be nominated for academy awards and predicting which
movies will gross at least two million dollars (adjusted for
inflation) during opening weekend. Both of these tasks are
very difficult and if there were a perfect predictor of movie
success, then studio executives would have identified it al-
ready. Also, both tasks rely on an unknown number of fac-
tors which may not all be in the database (e.g., Hollywood
politics are not included in IMDb). However, the difficulty
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Figure 6. qGraph query used to identify high-grossing movies and
to create the positive bags. Dashed circles indicate the query re-
striction and number ranges indicate the minimum number of ob-
jects required for a match.

of the tasks provides a good challenge for our approach.

5.1. High-grossing movies

The IMDb is a large connected database and thus corre-
sponds to the second data representation where each bag
contains only one instance. We created the bags by query-
ing the database using the qGraph query shown in Figure
6. This query is the depth-two structure surrounding high-
grossing movies with the exception that we do not follow
links from studios. Studios typically make hundreds of
movies and following those links would lead to unneces-
sarily large graphs. This query returns a set of subgraphs
from the database that match the specified structure. In
particular, each subgraph will contain a central movie ob-
ject and its related release objects where at least one re-
lease grossed more than 2 million dollars on opening week-
end. In addition, any associated studios, genres, producers,
directors, actors/actresses, and related movies will be in-
cluded in each subgraph. If any of the producers, direc-
tors, actors/actresses, or related movies have award objects
linked to them, these will also be included. Finally, the
graph is pruned to remove any events that occurred after
the movie’s release. This is necessary because we want
the structures that the MI learner identifies to predict for-
ward in time. To help minimize noise and the size of the
data, we further restrict the set to only contain movies from
1970 to 2000. We randomly sampled this set to obtain ap-
proximately 200 positive instances. We reused the same
query structure to generate the negative bags except that
the releases on opening weekend were restricted to gross
less than 2 million dollars. There are a considerable num-
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Figure 7. ROC curves comparing the false positive and true posi-
tive ratios for the chi-squared MI technique and kNN on the task
of predicting high-grossing movies.

ber of such movies so we randomly subsampled to obtain
approximately 200 negative bags.

We again ran 10-fold cross validation and obtained predic-
tions for the unseen positive and negative bags from the top
five percent of the concepts identified by MIL where the
concepts are ranked by their chi-squared values. The in-
ability to prune with diverse density hinders its use on such
a large data set so we used only the chi-squared approach.

Figure 7 shows the results of this experiment using ROC
curves. The chi-square method was able to detect several
substructures that predicted high-grossing movies. The re-
sults shown in this graph are for the most highly ranked
concept on each of the 10 folds, labeled chi-squared TOP,
and for the top 5% of the concepts, labeled chi-squared OR.
In the latter case, each concept outputs a separate prediction
and we used the OR, or max, of these predictions. Although
MIL has slightly lower performance in the region of the
ROC curve with higher true positives but also higher false
positives, its performance is better than kNN in the region
with lower false positives and higher true positives. Also,
its performance only degrades as the threshold is dropped
almost to zero while kNN is less robust to the threshold
value. With a threshold of 0.5, chi-squared TOP achieves
an accuracy of 69.2% and chi-squared OR has a 70.1% ac-
curacy. kNN’s accuracies are 61% and 53.6% for k = 1
andk = 10. With this prediction mechanism, studios could
better allocate money to movies. As we said in the begin-
ning of this experiment, predicting high-grossing movies
is a difficult task and it is unlikely that any learning agent
could achieve high accuracy.

One of the other benefits of using MIL on this database,
besides prediction accuracy, is that the answers are in the
form of understandable structures. Figure 8 shows some
of the top structures for predicting high-grossing movies.
It seems that movies are more likely to be high-grossing if
they are related to two or three other movies (e.g. a movie
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Figure 8. Top predictive relational structures identified by the MI
learner on the high-grossing movie task.

in a series likeStar Trekor Indiana Jonesor movies that
remade previous successful movies). Another predictive
structure that the chi-squared MI learner identified was a
movie related to another movie that was both nominated
and awarded an academy award for best picture. Last, just
the presence of a best picture award object in the subgraph
was predictive of movie success.

5.2. Movies nominated for academy awards

We repeated the same experiments for the difficult task of
predicting which movies will be nominated for academy
awards each year. The query used to generate the positive
bags is shown in Figure 9. The structure of this query is
identical to that discussed for high-grossing movies except
that we require an academy award nomination. The posi-
tive bags do not actually contain the award objects for the
central movie because we want MIL to identify predictive
structures. This query yields 72 positive bags. We use the
same query minus the requirement for the awards to cre-
ate the negative bags. The number of movies which are
not nominated for academy awards is quite large and we
randomly sample this set to obtain approximately the same
number of negative bags (74).

We again compare the predictive ability of chi-squared to
kNN on 10-fold cross validation with this data set. These
results are shown in Figure 10, again using ROC curves. In
this case, the structures found by the MI learner dominate
any of the predictions from kNN for all values ofk (We
show two of the best values ofk in the figure). Assuming
a threshold of 0.5, the accuracy of chi-squared TOP is 93%
and the accuracy of chi-squared OR is 77%. kNN has an
accuracy of 49.7% and 50.7% fork = 5 andk = 10.

We also examine the relational structures that the MI
learner identified as predictive of whether a movie will be
nominated for an academy award. Some of the top struc-
tures are shown in Figure 11. For this task, it seems that
movies with at least 20 actors in them are more likely to be
nominated for academy awards. This is surprising and is
likely due to a reverse effect that better movies have more
information in IMDb which means they tend to have more
actors associated with them. A related structure has the
same form but restricts the genre to drama. These structures
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Figure 9. qGraph query used to create the positive bags for
the task of predicting which movies will be nominated for an
academy award.
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Figure 10. ROC curves for the task of predicting which movies
will be nominated for academy awards.

may not help a studio executive to better allocate money to
new movies but they did identify an important characteris-
tic of the database, which is one of the goals of this work.
The presence of only a drama object is enough to predict
the nomination in many cases. Last, if a previous award ob-
ject existed in the subgraph, e.g., if the movie was related
to a movie that was also nominated or won an academy
award, it was likely to be nominated itself.

6. Discussion and Conclusions

In this paper, we have presented an approach to identify-
ing predictive structures in relational databases based on
the MIL framework. We adapted this framework for use
with relational data in two related ways: one where the
bags had multiple independent graphs as the instances and
one where the bags had one larger graph and the instances
were the (implicit) subgraphs of this graph. We demon-
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Figure 11. Relational structures identified by the MI learner for
predicting academy award nominees.

stated that these adaptations could be used to modify ex-
isting MI methods and that the relational version of these
methods could be used successfully on both a small and a
large database.

One of the strengths of MIL that is emphasized for flat data
is the ability to identify which features of the task are im-
portant. In the diverse density framework, this is referred
to asscaling. When the concept is a feature vector, di-
verse density can identify a scale for each feature that max-
imizes the diverse density value. If a feature is irrelevant,
its best scale will be zero. This strength also applies to
the techniques that we presented in this paper. Instead of
scaling features in a vector, the concepts identified by the
relational MI learner will only contain a subset of the ob-
jects and links from the bags. This subset represents the
more relevant features with respect to the current task.

Another advantage of MI techniques is that they identify
an actual concept (or set of concepts) that can be under-
stood by a human. kNN can be used to label new data
but it cannot identify aspects of the data that can help a
human to better understand the database. With such struc-
tures, a human can iteratively refine their understanding of
the database and of the tasks at hand.

Relational probability trees (RPT) (Neville et al., 2003) are
a related approach in that they have also been developed to
identify predictive structure in large relational databases.
However, MIL and RPTs express different relational con-
cepts. RPTs are designed to identify structure in a tree form
using attributes on objects or links or structure such as the
number of outgoing links from an object. Although this can
work very well on tasks such as predicting high-grossing
movies, RPTs cannot represent graph concepts such as the
3-clique presented in Section 4.
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