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Abstract

This paper introduces an approach for identify-
ing predictive structures in relational data using
the multiple-instance framework. By a predictive
structure, we mean a structure that can explain a
given labeling of the data and can predict labels
of unseen data. Multiple-instance learning has
previously only been applied to flat, or proposi-
tional, data and we present a modification to the
framework that allows multiple-instance tech-
nigues to be used on relational data. We present
experimental results using a relational modifica-
tion of the diverse density method (Maron, 1998;
Maron & Lozano-Rrez, 1998) and of a method
based on the chi-squared statistic (McGovern &
Jensen, 2003). We demonstrate that multiple-
instance learning can be used to identify predic-
tive structures on both a small illustrative data set
and the Internet Movie Database. We compare
the classification results tokanearest neighbor
approach.
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Figure 1. Schema that we used for the IMDb

for an academy award. Such structures are useful not only
for classification and prediction tasks but also for better un-
derstanding of large relational databases.

Multiple instance learning (MIL) (details of MIL are given
in Section 2) is a promising framework for identifying pre-
dictive structures in large relational databases. First, MIL
methods are designed for learning from ambiguous and

partially labeled data. With relational data, it is often easy
to label a collection of objects and their relations. However,
labeling each individual object and relation by its contribu-

Identifying useful structures in large relational databases igon to the overall situation is more difficult. For exam-

a difficult task. For example, consider the task of predict-ple’. we can obtain the I_abels for th_e movie subgraphs by
) . : : ; noting whether the movie was nominated for an academy
ing which movies will be nominated for academy awards

every year. The Internet Movie Database (IMDb) Con_award, but it would be difficult to label each actor and stu-
ery year. . ; dio by their individual contribution to whether the movie
tains about one hundred movies that were nominated for . . .
academv awards in the time period 1970 to 2000 and thou\/_vas nominated for an award. Second, multiple-instance
y : P : S (MI) techniques are designed to identify which part of the

sands of movies that were not nominated in this time pe-

riod. We would like to identify relational structure from a data can explain the labels. For _example, the rela_tlons n
I . the movies example could contain all related movies, re-
set of positive and negative examples (e.g., the structurF : . .
: . . ; eases, studios, etc., for each nominated movie, but the best
surrounding nominated and non-nominated movies) that . . X .
. . concept might only use the studio and producers linked via
can explain known labels and predict labels for unseen dataa. movie
Specifically, given the schema for the IMDb shown in Fig- '
ure 1, we would like to identify some substructure that canMIL has been used successfully in a number of applica-
predict which movies will be nominated and which moviestions using propositional data (Amar et al., 2001; Diet-
will not be nominated. An example substructure could beterich et al., 1997; Goldman et al., 2002; Maron, 1998;

a movie where one of the actors was previously nominatedlaron & Ratan, 1998; Zhang & Goldman, 2002; Zucker
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& Chevaleyre, 2000). However, none of these technique¥Ve present an approach to adapting the MIL framework
have examined MIL approaches for relational data everor use with relational data where bags are collections of
though the data set used in the introductory MIL paper (Di-graphs. The instances in the bag can be either explicitly
etterich et al., 1997) was relational (it was flattened intoenumerated as a set of graphs or they can be the set of
feature vectors to solve the task). By working with the (implicit) subgraphs of a single, larger, graph. The struc-
data in relational form, we can detect structures that canture of the relational data determines which representation
not be represented in a feature vector format. For examplés most appropriate. If the data consist of sets of disjoint
a link between two related movies where the movie’s pro-graphs, such as theusk task where each conformation
ducer was also nominated for an academy award for a presf a molecule could be represented as a separate graph,
vious movie would be very difficult to represent in propo- then itis better to explicitly enumerate the instances in each
sitional data, especially if the form of the final structure bag. If the data consist of a large connected database, such
is not known in advance. Simply flattening the relationalas IMDb, then a bag consisting of single large graph can
data (into homogeneous feature vectors) presents a numblee easily created by querying the database. For example,
of problems. The homogeneity of the resulting data eithein IMDb, the bags for the movies nominated for academy
means data duplication (which will affect probability esti- awards can be created by querying for all objects connected
mation) or data loss through aggregation. to a nominated movie by one or two links.

] For the MI notation, we follow that of Maron (1998) and
2. Notation and background Maron and Lozano-&rez (1998). The set of positive bags
1 is denoted3™ and theith positive bag i8;". Likewise, the
We use the ROXIMITY * system to represent, store, and . . L .
. set of negative bags is denotBd and theith negative bag
query relational data sets. Lét= (v,e) be a graph. Ob- = "~ : . .
is B . If the discussion applies to both types of bags, we

jects in the world, such as pepple_, places, things, a.ndrop the superscript and refer to it Bs The jth instance
events, are represented as vertices in the graph. Relation

between these objects, suchased-in(actor, moviejre Of theith bag is denote®;;. The target concept is denoted

represented by edges. In general, if there is a relatioly and other concepts &s With flat data, a concept is a

. point in feature space. With relational data, a concept is an
r(o1,02), thenos, 02 € vandr € e. In PROXIMITY , vertices

are called objects and relations are called links. Both ob? tributed graph.

jects and links can have multiple attributes associated with

them. For example, using the schema shown in Figure 13. Ml learning on relational data
movies, people, genres, etc., are all objects. Relationshi
such asawarded(movie, best-picturaye links. Attributes
can be associated with objects, suchnagvie.namgor
links, such asawarded.award-statusPROXIMITY allows

PPhe data available to an MI learner is a set of positive and
negative bagsB*™ andB~. If the concept is a feature vec-
tor v, then each bag consists of a set of feature vectors:

: X Bé = {Vi1,Vi2,...,Vik}. The most straightforward transfor-
us to query the database using a graphical query languade, o apply MIL to relational data is to have each in-
called qG“’?‘ph (Blau et al., 2002). qG“’?‘ph provides a formstance represented as a separate graph. In this case, a bag
of abstraction on top of SQL by allowing us to constructWould consist of a set of graph& — {Gi1,Gi Gic}
visual queries of the graphical database. Queries return grapn®y = (i1, Biz, -, ik

. ! The goal is then to find a concept that can explain the la-
collection of subgraphs and not just a set of database row%.e"ng of the bags. The concept iz a subgraph gf one the

An Ml learner uses labeldgagswhere a bag is a collection graphs inB™ andB~. This representation is best suited for
of instanceswith one label for the entire collection. posi-  tasks where the data are already available as a set of dis-
tive bagcontains at least one instance of theget concept  joint graphs. Thewusk data set (Dietterich et al., 1997),
while a negative bagcontains none. With flat data, both image recognition tasks (Maron & Ratan, 1998), and the
instances and target concepts are points in feature spaamautagenesis data set (Zucker & Chevaleyre, 2000) fit into
With relational data, both instances and target concepts athis framework.

graphs, or relations among a (heterogeneous) set of objec%

The goal is to find a concept that explains the labels for the hen the relational data are available as a large connected

bags and can be used to predict labels for unseen data. g{aph instead of a set of unconnected graphs, it may be eas-

is not known in advance which instance caused the bag o o identify a single subgraph as containing something

be labeled as positive. If this were known, a superviseéjosmve instead of enumerating every instance. For exam-
learning approach coul.d be used instead ' ple, in the IMDb, we can hypothesize that there is some

relational structure surrounding movies that could be used
lFor additional details on E®OXIMITY, see to predict whether a movie gets nominated for an academy

http://kdl.cs.umass.edu. award. Without knowing the structure in advance, it would

be very difficult to create bags of every possible struc-



ture. However, it is relatively easy to identify the depth-two We use the metric proposed by Bunke and Shearer (1998)
structure surrounding the movies and to use this to createhich is based on finding the maximal common subgraph
bags where each bag has only one graph. The instances dMCS) between two graphs. They demonstrate that this
assumed to be the set of all subgraphs of the single grapfistance measure satisfies the metric properties. The dis-

in the bag. tance between two grapl® andG; is defined as:
More formally, we propose to create the set of b&js IMCS(Gy1,Gy)|
andB~ such thatB; = {G;} whereG; is a single (large) d(G1,Gz2) = 1- max[Gal,[Ga]) 3)

graph. The instances & are assumed to be the set of all

subgraphs of5;. Since the size of this set is exponential whereMCS Gy, Gy) is the maximum common subgraph of

in the size ofG;, where|G;| is defined as the sum of the G; andG,. This metric was developed for unlabeled graphs
number of vertices and edges @, we do not explicitty  but can be modified so that the MCS also uses the attributes
enumerate the instances for each bag. Instead, the searhlimit the number of matches. A disadvantage of this met-

methods take into account this assumption. ric is that computing the MCS is exponentially complete.
In the course of a thorough search in concept space, MCS
3.1. Relational diverse density is calculated frequently. We approximate the calculation

by limiting the depth of the recursive search. Research on

Several existing MI methods can be transformed to worky yrincinled polynomial-time distance metric for attributed
with relational data. We adapt both diverse density (Marongraphs is a topic for future work. Based on this metric, we
1998; Maron & Lozano-Erez, 1998) and chi-squared (Mc- defineP(B;; € c) as:

Govern & Jensen, 2003). We first briefly review the defini-
tions for diverse density. The most diversely dense concept IMCYBjj,c)|
is defined as that which is closest to the intersection of the P(Bjec) = min([Bii [, [c)
positive bags and farthest from the union of the negative a

bags. More precisely, Maron defines the diverse density o

a partlfcular conEep(c to be: DD(C). — F(C? Ct|B+’B. )- where the maximum is replaced by a minimum. Since we

We. refer toP(c = &) asP(c) .to simp ify the equat!ons. are searching for the best subgraph, it is better to weight the
Using Bayes_, ru_Ie and assuming mde_penden_ce, _th's c.an t?ﬁatch by the size of the proposed subgraph rather than by
reduced to finding the conceptior which the likelihood: the size of the instances or of the bag, which could be arbi-

) + . =) i i -
Dll.tﬁ'ﬁtrhpic‘B' )Hltﬁ'ﬁ.m';gc‘?' ) 'i maX|matI. The {)r:oba. trarily large. If the instances in the bag are not enumerated,
lity that conceptc is the target concept given the evi- o 5y hocomes:

dence available in the ba,(c|B;), still needs to be de-

(4)

Note that Equation 4 is a slight modification of Equation 3

termined. Maron discusses several ways to do this. In this MCSc.B"
4 IMCS(c,B)|
work, we follow his suggestion of using a noisy-or model P(c/B") = min(c,[B7]) )
(Pearl, 1988), in which case we have: N
. , Pelr) = 1- MBIl )
P(cB") = 1- [] A1-PBjec) (1) ' min(|c|,|B; )
1=j<p
P(cB) = (1—-P(B; €c)), (2)  This means that the probability thatis the correct con-
1<j<p : cept given the evidence available in positive IBigis the

percent match of graphito graphB;". Likewise, the prob-
ability that c is the correct concept given the evidence in
‘negative badg;” is one minus the percent match of graph
to graphB; . In other words, ift matches highly witB;',
CalculatingP(Bjj € c) requires a specific form of target the probability that is correct will be high but if it matches
concept. In the case of flat data, Maron often used whahighly with B, the probability that is correct will be low.
he called the single-point concept which is a point in fea-

ture space. With this concept, the calculatiorP(B;; < c) 3.2. Relational chi-squared method

|s_based on the Euclidean distance between péijtand In addition to diverse density, we present results using the
c in feature space. We need to defld@;; < c) whenB;; y -
andc are both attributed graphs instead of points in fea—Chl squared MI method (McGovern & Jensen, 2003). Chi
: grap P . squared is simpler to calculate than diverse density and it
ture space. To do this, we need a method for measuring theI
distance between two attributed araphs allows for a more thorough search of the concept space
grapns. because it provides a guaranteed pruning method. Chi-
Metrics for measuring the distance between attributedsquared is calculated by filling in the contingency table

graphs are not as well studied as metrics for flat datashown in Table 1. The rows of the table correspond to the

wherepis the number of instances in bBgandP(B;; < c)
is the probability that the specified instance is in the con
cept.



Table 1. Contingency table used by the chi-squared method. The @
cells are filled in using the predicted and known labels for the \o

training bags using the proposed concept. 3.0

Actual ‘ 4%
Bag label @ 20 @
+ | -
Predicted +| a | b

Figure 2. Target concept for the illustrative data set

baglabel -|{ c | d

a sample negative instance are shown in Figure 3a. The

) bags for the second data representation, which contained
predicted label from the concept and the columns Correpynly one instance per bag, varied in size from ten to twenty
spond to the actual labels for the training bags. Assumingpects and had twice as many random links as there were
a method for labeling the bags given a proposed target conspjects. Example positive and negative bags for this frame-
cept, the table is filled out in the following manner. If the \york are shown in Figure 3b. In both cases, we generated

concept predicts that the bag will be positive and it is POSywenty positive bags and twenty negative bags.
itive, a is incremented. If the prediction is positive but the

bag is really negativey is incremented. If the prediction is For this experiment, we compared the relative prediction
negative and the bag is positiveis incremented. Finally, accuracies for the relational diverse density approach, the
d is incremented if the concept predicts negative and th&hi-squared technique, and tkerearest neighbors (kNN)
bag is negative. Chi-squared is calculated by summing thé'ethod. We repeat this comparison for both data repre-
squared differences for the expected values in each cell gfentations. For the diverse density and chi-squared ap-
the contingency table versus the observed values. proaches, the Ml learner identified the best concept (or set
. ] ] ) of concepts) for predicting the bag labels. Given a rela-

The best concept is dgflned as that with the h!ghest Chitional concept and a bagd; with an unknown label, the
squared value. This will occur when the mass is concenpyredicted real-valued label is:

trated on the main diagonal (e.g.,aandd) which means
that the concept is predicting the most positive and the most
negative bags correctly. More information about the chi-
squared evaluation function for MIL can be found in (Mc-

IMCS(Bjj, c)|

label= maxP(Bjj €c) = P
1<j<k (B 1<j<k min(|Bi; |, |c|)

Govern & Jensen, 2003). If there is only one graph in the bag, this becomes:
. . . label= M
4. Experimental results: illustrative data set min(|Bi,|c|)’

We first present results using a small illustrative databas&/nder this formulation, the predicted label for the bag will
where we both know the target answer in advance and cabe a real number in the intervi, 1]. A prediction of zero
easily visualize the data. The objects and links each havemeans the bag should be labeled as negative and a predic-
one real-valued attribute associated with them. The targeton of one means that the bag should be labeled as positive.
concept, shown in Figure 2, is a size-three cliqgue with avalues in the rangfd, 1] are also possible and we examine
particular set of attribute values on the objects and links. the best choice of thresholds through the use of an ROC

We illustrate both chi-squared and diverse density usin curve that measures the ratlo of true positives to false posi-
%ques as the threshold varies from zero to one.

both data representations and this target concept. In bot
cases, graphs, including objects, links, direction of theWe used kNN as a baseline for comparison. We identify
links, and attributes, were generated randomly. To crethek nearest neighbors using the distance metric specified
ate a positive instance, a graph was randomly grown fronin Equation 3. Because the true labels for the individual
the target cligue. Negative instances were randomly growinstances are unknown, multiple instances in a bag are all
from an empty graph. Attribute values from the target con-assumed to have the same label as the bag. If the instances
cept can be used in negative instances so long as the entiage not individually enumerated, we assign the label to the
concept is not included. For the first data representationgraph representing the bag itself and use this larger graph
both positive and negative graphs varied in size from thredor the KNN calculations. We modify the prediction mech-

to ten objects with the same number of random links. Eactanism of kNN in the following manner. For each instance
positive bag had one positive instance and from two to sixn an unlabeled bag, we determine the ratio of positive in-
negative instances. Negative bags contained from three tstances in th& nearest instances. The most extreme of
seven negative instances. A sample positive instance arttiese ratios weighted by the number of different positive or
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. _ _ perfect performance but it was able to quickly find the tar-
Figure 3. A: Example instances for the three-clique task for the

. . . et concept for this task. The relational diverse density ap-
representation where each instance is enumerated. The target con- - h
. ; i . “proach sometimes found a subset of the true concept which
cept is shown with dashes. B: Example bags for the three-cliqu

task for the representation where each bag consists of a sing%"’we it a small fglse po_smve rate depenc{mg on the thre.sh—
large graph. old chosen to differentiate between positive and negative
predictions. The two KNN approaches shown had higher
7 accuracy than diverse density for very high thresholds but
et quickly degraded in performance while diverse density was
' more robust to threshold changes. At a threshold.bf 0
kea s’ ; the accuracies were: chi-squared = 100%, diverse density
R = 85%, and kNN = 80% and 70% fér= 4 andk = 20.
- Accuracy is the percent of bag labels in the test set that are
predicted correctly.
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 Chsquared Figure 5 shows the ROC curve for the same three meth-
, ¢ Diverse density ods in the case where each bag had only one large graph in
5 02 04 06 08 ] it. With a threshold of (b, chi-squared had 100% accuracy,
Felse Posiive Rate diverse density had 98% accuracy, and kNN had 70% and
50% accuracies fok = 3 andk = 10. These results are
Figure 4. ROC curve comparing the performance of chi-squared,comparable with those presented above and demonstrate
diverse density, and kNN on the illustrative data set. In this caseihat hoth data representations can be used successfully for
each bag had an enumerated set of instances. MIL on relational data. Our next experiments focus on a

much larger database.

negative bags that contributed to the ratio is chosen and the ]

ratio itself (without the weighting) is output as the label. 5. Experimental results: IMDDb
The idea of weighting the ratio this way is related to di-
verse density and helps to make kNN a higher performin
baseline for comparison.

The IMDb is a much larger database with one million ob-
Qects and nearly five million links. This is a large database
where the ability to identify predictive structures should
Figure 4 shows the ROC curves for relational diverse denhelp us to better understand the nature of the database. The
sity, chi-squared, and two valueslofor kNN for the first  two tasks that we present are: predicting which movies will
data representation, where there are multiple enumeratdze nominated for academy awards and predicting which
instances per bag. These numbers are averaged over Ifovies will gross at least two million dollars (adjusted for
folds of cross validation. The test set for each fold wasinflation) during opening weekend. Both of these tasks are
2 positive bags and 2 negative bags and the training setery difficult and if there were a perfect predictor of movie
was the remaining 18 positive bags and 18 negative bagsuccess, then studio executives would have identified it al-
The chi-squared method identifies the correct target conready. Also, both tasks rely on an unknown number of fac-
cept each time and had perfect prediction for this task. Weors which may not all be in the database (e.g., Hollywood
do not claim that the chi-squared method will always havepolitics are not included in IMDb). However, the difficulty
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movie2.year, release.year, Actor-award.yeanovie.year Figure 7. ROC curves comparing the false positive and true posi-

Director-award.year, Producer-award.yeamovie.year ti¥e ra(;i_o f forr:_hehchi-sqgared M.I technique and kNN on the task
1970< movie.year< 2000 of predicting high-grossing movies.

Figure 6. qGraph query used to identify high-grossing movies andber of such movies so we randomly subsampled to obtain
to create the positive bags. Dashed circles indicate the query re-

striction and number ranges indicate the minimum number of Ob_approxmately 200 negative bags.

jects required for a match. We again ran 10-fold cross validation and obtained predic-
tions for the unseen positive and negative bags from the top
five percent of the concepts identified by MIL where the

of the tasks provides a good challenge for our approach. CONCepts are ranked by their chi-squared values. The in-
ability to prune with diverse density hinders its use on such

5.1. High-grossing movies a large data set so we used only the chi-squared approach.

The IMDb is a large connected database and thus correEIgure 7 shows the results of this experiment using ROC

sponds to the second data representation where each pGUrves. The chi-square method was able to detect several

a . ; X i
contains only one instance. We created the bags by quers_gbstructures that predicted high-grossing movies. The re-

ing the database using the qGraph gquery shown in FigureU|tS shown in this graph are for the most highly ranked
6. This query is the depth-two structure surrounding high_concept on each of the 10 folds, labeled chi-squared TOP,

. . i . and for the top 5% of the concepts, labeled chi-squared OR.
grossing movies with the exception that we do not follow L
7 . . . Inthe latter case, each concept outputs a separate prediction
links from studios. Studios typically make hundreds of T
: : : and we used the OR, or max, of these predictions. Although
movies and following those links would lead to unneces-

. : MIL has slightly lower performance in the region of the
sarily large graphs. This query returns a set of subgraph L - .

o OC curve with higher true positives but also higher false
from the database that match the specified structure. In .. : ; . .
. : . : positives, its performance is better than KNN in the region
particular, each subgraph will contain a central movie ob-" - . .
: | . with lower false positives and higher true positives. Also,
ject and its related release objects where at least one re- .
- : its performance only degrades as the threshold is dropped
lease grossed more than 2 million dollars on opening week- . :
. . . almost to zero while kNN is less robust to the threshold
end. In addition, any associated studios, genres, producers : : ;
. . . - value. With a threshold of.8, chi-squared TOP achieves
directors, actors/actresses, and related movies will be in- ;
an accuracy of 62% and chi-squared OR has a 7% ac-

cluded in each subgraph. If any of the producers, direc- uracy. kNN's accuracies are 61% and@ for k — 1

t_ors, actors/actresses, or related movies have a.Ward Objecgﬁdk = 10. With this prediction mechanism, studios could
linked to them, these will also be included. Finally, the : - .
. better allocate money to movies. As we said in the begin-
graph is pruned to remove any events that occurred after. : . o . . -
- o njng of this experiment, predicting high-grossing movies
the movie’s release. This is necessary because we wan

the structures that the Ml learner identifies to predict for-IS a d|ff|cglt taslf and itis unlikely that any learning agent
L S ) . could achieve high accuracy.

ward in time. To help minimize noise and the size of the

data, we further restrict the set to only contain movies fromOne of the other benefits of using MIL on this database,
1970 to 2000. We randomly sampled this set to obtain apbesides prediction accuracy, is that the answers are in the
proximately 200 positive instances. We reused the sam#rm of understandable structures. Figure 8 shows some
query structure to generate the negative bags except thaf the top structures for predicting high-grossing movies.
the releases on opening weekend were restricted to grossseems that movies are more likely to be high-grossing if
less than 2 million dollars. There are a considerable numthey are related to two or three other movies (e.g. a movie
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and awarded an academy award for best picture. Last, just 1970< movie.year< 2000
the presence of a best picture award object in the subgraph
was predictive of movie success. Figure 9. qGraph query used to create the positive bags for

the task of predicting which movies will be nominated for an
5.2. Movies nominated for academy awards academy award.
We repeated the same experiments for the difficult task of 1"
predicting which movies will be nominated for academy
awards each year. The query used to generate the positive .
bags is shown in Figure 9. The structure of this query is
identical to that discussed for high-grossing movies except
that we require an academy award nomination. The posi-
tive bags do not actually contain the award objects for the
central movie because we want MIL to identify predictive

o o
o ©
)

True Positive Rate
o
~

0.2 o —
structures. This query yields 72 positive bags. We use the e op
same query minus the requirement for the awards to cre- o ’(;;;kNN — 1‘
ate the negative bags. The number of movies which are " FalsePosive Rate

not nominated for academy awards is quite large and we

randomly sample this set to obtain approximately the Same;jgure 10. ROC curves for the task of predicting which movies
number of negative bags (74). will be nominated for academy awards.

We again compare the predictive ability of chi-squared to

kNN on 10-fold cross validation with this data set. These : .
S . ; may not help a studio executive to better allocate money to
results are shown in Figure 10, again using ROC curves. In : L . . _
ﬁrgew movies but they did identify an important characteris-
any of the predictions from kNN for all values &f(We ic of the database, which is one O.f thg goals of this worI.<.
The presence of only a drama object is enough to predict

show two of the best values &fin the figure). Assuming the nomination in many cases. Last, if a previous award ob-
a threshold of (®, the accuracy of chi-squared TOP is 93%. Y ) ap

an th acuracy ofchsared OF 5 70, KN s alf ™ 245120 11 Wb0a0h .. ne movi s et
accuracy of 4%% and 507% fork =5 andk = 10. y

award, it was likely to be nominated itself.

We also examine the relational structures that the Ml

Iearner identified as predictive of whether a movie will be 6. Discussion and Conclusions

nominated for an academy award. Some of the top struc-

tures are shown in Figure 11. For this task, it seems thaln this paper, we have presented an approach to identify-
movies with at least 20 actors in them are more likely to being predictive structures in relational databases based on
nominated for academy awards. This is surprising and ishe MIL framework. We adapted this framework for use
likely due to a reverse effect that better movies have moravith relational data in two related ways: one where the
information in IMDb which means they tend to have more bags had multiple independent graphs as the instances and
actors associated with them. A related structure has thene where the bags had one larger graph and the instances
same form but restricts the genre to drama. These structuregere the (implicit) subgraphs of this graph. We demon-



views and conclusions contained herein are those of the au-

rn rk thors and should not be interpreted as necessarily represent-
ctedin . . . . . .

[20.20] [20..20] ing the official policies or endorsements either expressed or

implied, of DARPA, AFRL, or the U.S. Government.
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